Search results for "human pluripotent stem cells"

showing 4 items of 4 documents

GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

2017

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…

0301 basic medicineBiolääketieteet - Biomedicineneural networkstem cell derived neuronslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium imagingPremovement neuronal activityhuman pluripotent stem cellsInduced pluripotent stem celllcsh:Neurosciences. Biological psychiatry. Neuropsychiatrygap junctionsOriginal ResearchArtificial neural networkGABAA receptorChemistrymicroelectrode arrayGap junctionsynchronyDepolarizationMultielectrode arraycalcium imaging030104 developmental biologynervous systemexcitatory GABANeuroscienceNeurotieteet - Neurosciences030217 neurology & neurosurgeryNeuroscienceFrontiers in cellular neuroscience
researchProduct

Quantitative mass spectrometry for human melanocortin peptides in vitro and in vivo suggests prominent roles for β-MSH and desacetyl α-MSH in energy …

2018

Objective The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. Methods We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from …

MalePluripotent Stem CellsLeptinlcsh:Internal medicineendocrine systemhPSC human pluripotent stem cellsPro-Opiomelanocortin[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyHypothalamusMass SpectrometryTandem Mass Spectrometry[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]beta-MSHHomeostasisHumansHuman pluripotent stem cellObesitylcsh:RC31-1245MSHNeuronsintegumentary systemReceptors MelanocortinLC-MS/MS liquid chromatography tandem mass spectrometryNeuropeptidesdigestive oral and skin physiologyPOMCPVH the paraventricular nucleus of the hypothalamusCTX cerebral cortexMelanocortinsNeuropeptidealpha-MSHOriginal ArticleFemalehormones hormone substitutes and hormone antagonistsChromatography Liquid
researchProduct

Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripote…

2016

Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …

Materials Chemistry2506 Metals and AlloysPluripotent Stem CellsAgmatinePolymers and PlasticsDouble bondpolyamidoaminesPolyestersCell Culture TechniquesNanofibersBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsPolyamidoaminePolyaminesMaterials ChemistryHydrogel compositehuman pluripotent stem cellHumansatmospheric pressure nonequilibrium plasmaInduced pluripotent stem cellatmospheric pressure nonequilibrium plasma; electrospun poly-l-lactic nanofibers; human pluripotent stem cells; poly-l-lactic acid-AGMA1 hydrogel composites; polyamidoamines; biotechnology; bioengineering; biomaterials; polymers and plastics; materials chemistry2506 metals and aloyschemistry.chemical_classificationAddition reactionPolymers and PlasticAqueous solutionTissue ScaffoldsHydrogels021001 nanoscience & nanotechnologyBiomaterial0104 chemical sciencesChemical engineeringchemistryCovalent bondNanofiberelectrospun poly-l-lactic nanofiberpoly-l-lactic acid-AGMA1 hydrogel compositeAmine gas treating0210 nano-technologyBiotechnology
researchProduct

Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold

2022

Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin…

hyaluronaaniindusoidut monikykyiset kantasolutInduced Pluripotent Stem CellsBiomedical Engineeringkudosviljelybiomimeettiset materiaalitBiochemistryBiomaterialsbrain-mimetic hydrogel scaffoldBiomimeticshyaluronic acidAnimalsHumanshuman pluripotent stem cellsMolecular Biologychondroitin sulfateNeuronsdopamiini318 Medical biotechnologyTissue ScaffoldsBrainhermoverkot (biologia)General MedicineExtracellular Matrixhermosolut3111 Biomedicineneuronal networkdopamineBiotechnology
researchProduct